Sensitivity of heavy rainfall simulations to mountain heights: a windward case of the Southern Alps Yang Yang¹, Ian Boutle², Stuart Moore¹, Trevor Carey-Smith¹ and John Crouch³ ¹ NIWA Wellington New Zealand, ² Met Office UK, ³MetService New Zealand #### 1. Introduction 24-h rain at 9am (NZST,CTRL) 19 June 2015 Hokitika OBS: 211.3 (mm) CTRL(RAL1M):140.2 (mm) What caused the errors in this heavy rainfall? #### 1. Introduction # MetService MSJ. ANALYSIS VALID 0600 18-JAN-2015 UTC SSUED 0750 18-JAN-2015 UTC 1016 1024 1027 1008 1016 1024 1027 1008 1016 1008 1016 1008 1016 1008 1016 1008 1016 1008 1016 1008 1016 1008 1016 1008 10 Forecast Range: 18 h, Valid at 1800:18-Jun-2015 (NZST) #### Major factors caused this heavy rainfall: #### Front lifting enhanced by orographic lifting. #### 1. Introduction For 103 tallest mountains of the South Island, the mean height is ~2650 m For CTRL, the terrain was created from raw terrain data with ~1 km resolution, corresponding height: ~1800 m #### Hypothesis for the large rainfall errors: Weaker mountain dynamical forcing due to a lower terrain. | EXP | Description | h (m) | | | |-------|--|-----------|--|--| | | | | | | | CTRL | Using the original terrain data generated by the nesting suite of UM | 1800 1.21 | | | | CIKL | Increasing the terrain height by 1.1 times of | 1000 1.21 | | | | 1.1X | the terrain of CTRL | 1980 1.11 | | | | | Increasing the terrain height by 1.2 times of | | | | | 1.2X | the terrain of CTRL | 2160 1.01 | | | | 1 037 | Increasing the terrain height by 1.3 times of | 2240 0 04 | | | | 1.3X | the terrain of CTRL | 2340 0.94 | | | | 1.4X | Increasing the terrain height by 1.4 times of the terrain of CTRL | 2520 0.61 | | | | 1,721 | the terrain of CTRE | 2320 0.01 | | | The movement of the cold front is slower for a higher terrain For a higher terrain, the cold air on the west side is shallower, and the intensity of the cold front is weaker regarding cold air wind speed. Orographic lifting is stronger for a higher terrain For a higher terrain, less rainfall offshore and more rainfall over land The location of the heaviest rainfall is closer to OBS for a higher terrain The pink bars denote the arrival time of the cold front at stations. For a higher terrain, the arrival time of the cold front at stations is closer to OBS than CTRL For a higher terrain, the hourly rainfall matches OBS better than CTRL regarding time and intensity #### Daily rainfall observations (OBS) and simulations valid at 0900 NZST 19 June Distribution of stations | Station No. | Sta. Name | OBS | 1.4X | 1.3X | 1.2X | 1.1X | CTRL | |-------------|----------------|-------|-------|-------|-------|-------|-------| | 1 | Greymouth | 144.4 | 136.0 | 144.0 | 151.9 | 206.6 | 186.2 | | 2 | Arthurs Pass | 81.0 | 130.2 | 113.7 | 123.0 | 114.1 | 82.3 | | 3 | Mt Philistine | 163.0 | 107.6 | 113.4 | 107.7 | 93.4 | 87.5 | | 4 | Hokitika | 211.3 | 167.6 | 197.7 | 178.4 | 144.7 | 140.2 | | 5 | Ross | 188.5 | 240.2 | 184.0 | 133.0 | 121.6 | 106.5 | | 6 | Reefton | 82.8 | 94.0 | 105.9 | 102.3 | 102.7 | 97.2 | | 7 | Paroa | 144.9 | 139.6 | 156.9 | 216.2 | 171.7 | 118.6 | | 8 | Kokiri | 180.6 | 177.2 | 178.8 | 171.2 | 156.3 | 147.9 | | 9 | Inchbonnie | 327.9 | 210.8 | 248.9 | 247.0 | 247.0 | 231.8 | | 10 | Kowhitirangi | 265.3 | 250.1 | 226.2 | 200.7 | 164.9 | 149.3 | | 11 | Lower Whataroa | 274.7 | 180.7 | 169.9 | 192.8 | 139.4 | 113.8 | MAE (mm) 42.2 33.6 48.2 63.2 66.1 MAE is smaller for a higher terrain, except for 1.4X, implying the way to raise terrain in this study is not a good way, need to use high quality data like SRTM 100m. #### Summary - This heavy rainfall was caused by cold front lifting enhanced by orographic lifting. - Weaker mountain blocking in CTRL caused stronger and faster cold front, leading to large errors in the heavy rainfall simulation. - With higher terrain, better simulation of the cold front and orographic lifting, thus, better heavy rainfall simulation. #### **Next steps:** - Using SRTM 100m data to create the terrain file. - Turning on the sub-grid gravity wave drag scheme. - Rerun this rainfall case for comparisons. ### Thanks! Any questions?